| 摘要 |
The presence of food contaminants poses a growing threat to public health. Developing advanced and reliable biosensing methods with high sensitivity, specificity, and reproducibility for detecting food contaminants is an urgent requirement for food safety control. Nanozymes, recognized for their enzyme-mimicking catalytic activities and the unique physicochemical properties of nanomaterials, have been extensively utilized in the development of diverse biosensors for food safety assays. Recent years have witnessed an exponential surge in relevant publications, garnering considerable research interest. This review summarizes recent advancements in the catalytic mechanisms of peroxidase-and oxidase-like nanozymes and provides a comprehensive discussion on the construction, sensing mechanisms, and practical applications of nanozymes-based biosensors developed for detecting food contaminants over the past five years. These biosensors include colorimetric, fluorescence, chemiluminescent, electrochemical, surface-enhanced Raman scattering, multi-modal, and other types, used for detecting food contaminants such as mycotoxins, pathogens, pesticides, veterinary drugs, illegal additives, and heavy metals. The review also addresses current challenges and prospects in this field, aiming to summarize advancements and promote further exploration of nanozyme-based sensing platforms to guarantee food safety. |