论文
您当前的位置 :
A disentangled generative model for improved drug response prediction in patients via sample synthesis
论文作者 Li, KS; Shen, BH; Feng, FYM; Li, XL; Wang, Y; Feng, N; Tang, ZX; Ma, LX; Li, H
期刊/会议名称 JOURNAL OF PHARMACEUTICAL ANALYSIS
论文年度 2025
论文类别
摘要 Personalized drug response prediction from molecular data is an important challenge in precision medicine for treating cancer. Computational methods have been widely explored and have become increasingly accurate in recent years. However, the clinical application of prediction methods is still in its infancy due to large discrepancies between preclinial models and patients. We present a novel disentangled synthesis transfer network (DiSyn) for drug response prediction specifically designed for transfer learning from preclinical models to clinical patients. DiSyn uses a domain separation network (DSN) to disentangle drug response related features, employs data synthesis technology to increase the sample size and iteratively trains for better feature disentanglement. DiSyn is pretrained on large-scale unlabeled cancer samples and validated by three datasets, The Cancer Genome Atlas (TCGA), Investigation of Serial Studies to Predict Your Therapeutic Response With Imaging And moLecular Analysis 2 (I-SPY2) and Novartis Institutes for Biomedical Research Patient-Derived Xenograft Encyclopedia (NIBR PDXE), achieving competitive performance with the state-of-the-art methods on cancer patients and mice. Furthermore, the application of DiSyn to thousands of breast cancer patients show the heterogeneity in drug responses and demonstrate its potential value in biomarker discovery and drug combination prediction. (c) 2024 The Author(s). Published by Elsevier B.V. on behalf of Xi'an Jiaotong University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
15
影响因子 8.9